Infrared and Raman spectra of silica polymorphs from an ab initio parametrized polarizable force field.

2006 
The general aim of this study is to test the reliability of polarizable model potentials for the prediction of vibrational (infrared and Raman) spectra in highly anharmonic systems such as high temperature crystalline phases. By using an ab initio parametrized interatomic potential for SiO2 and molecular dynamics simulations, we calculate the infrared and Raman spectra for quartz, cristobalite, and stishovite at various thermodynamic conditions. The model is found to perform very well in the prediction of infrared spectra. Raman peak positions are also reproduced very well by the model; however, Raman intensities calculated by explicitly taking the derivative of the polarizability with respect to the atomic displacements are found to be in poorer agreement than intensities calculated using a parametrized “bond polarizability” model. Calculated spectra for the high temperature β phases, where the role of dynamical disorder and anharmonicities is predominant, are found to be in excellent agreement with expe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    53
    Citations
    NaN
    KQI
    []