language-icon Old Web
English
Sign In

Non-analytic dynamics

2010 
In this chapter we investigate one procedure for describing the dynamics of complex webs when the differential equations of ordinary dynamics are no longer adequate, that is, the webs are fractal. We described some of the essential features of fractal functions earlier, starting from the simple dynamical processes described by functions that are fractal, such as the Weierstrass function, which are continuous everywhere but are nowhere differentiable. This idea of non-differentiability suggests introducing elementary definitions of fractional integrals and fractional derivatives starting from the limits of appropriately defined sums. The relation between fractal functions and the fractional calculus is a deep one. For example, the fractional derivative of a regular function yields a fractal function of dimension determined by the order of the fractional derivative. Thus, changes in time of phenomena that are described by fractal functions are probably best described by fractional equations of motion. In any event, this perspective is the one we developed elsewhere [31] and we find it useful here for discussing some properties of complex webs. The separation of time scales in complex physical phenomena allows smoothing over the microscopic fluctuations and the construction of differentiable representations of the dynamics on large space scales and long time scales. However, such smoothing is not always possible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []