Determination of Critical Length Scales for Corrosion Processes using Microelectroanalytical Techniques
2004
A key factor in our ability to produce and predict the stability of metal-based macro- to nano-scale structures and devices is a fundamental understanding of the localized nature of corrosion. Corrosion processes where physical dimensions become critical in the degradation process include localized corrosion initiation in passivated metals, microgalvanic interactions in metal alloys, and localized corrosion in structurally complex materials like nanocrystalline metal films under atmospheric and inundated conditions. This project focuses on two areas of corrosion science where a fundamental understanding of processes occurring at critical dimensions is not currently available. Sandia will study the critical length scales necessary for passive film breakdown in the inundated aluminum (Al) system and the chemical processes and transport in ultra-thin water films relevant to the atmospheric corrosion of nanocrystalline tungsten (W) films. Techniques are required that provide spatial information without significantly perturbing or masking the underlying relationships. Al passive film breakdown is governed by the relationship between area of the film sampled and its defect structure. We will combine low current measurements with microelectrodes to study the size scale required to observe a single initiation event and record electrochemical breakdown events. The resulting quantitative measure of stability will be correlated with metalmore » grain size, secondary phase size and distribution to understand which metal properties control stability at the macro- and nano-scale. Mechanisms of atmospheric corrosion on W are dependent on the physical dimensions and continuity of adsorbed water layers as well as the chemical reactions that take place in this layer. We will combine electrochemical and scanning probe microscopic techniques to monitor the chemistry and resulting material transport in these thin surface layers. A description of the length scales responsible for driving the corrosion of the nanocrystalline metal films will be developed. The techniques developed and information derived from this work will be used to understand and predict degradation processes in microelectronic and microsystem devices critical to Sandia's mission.« less
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
2
References
0
Citations
NaN
KQI