Lidar-Polarimeter Retrieval OSSEs in Support of NASA's Aerosols and Clouds-Convection-Precipitation (A-CCP) Study

2019 
The 2017 Decadal Survey (DS) highlighted Earth System Science themes, science and application questions, and several high priority objectives that have led to the inclusion of Aerosols (A) and Clouds-Convection-Precipitation (CCP) as Designated Observables (DOs). On June 1, 2018, several NASA centers (GSFC, LaRC, JPL, MSFC, GRC and ARC) submitted a joint Study Plan to the NASA Earth Science Division for the Aerosol (A) and Cloud, Convection, and Precipitation (CCP) Pre-formulation Study (A-CCP). The DS and the A-CCP team recognized the science merit in combining the A and CCP DOs for both enhancing the ability to address a number of science objectives and also to provide an expanded capability to address additional objectives beyond those addressed by individual DOs.A critical element of the A-CCP observing strategy is to make extensive use of new passive and active sensors as well as of the so-called Program-of-Record (PoR), complemented by a fully integrated sub-orbital component. Central to this observing system design is the adoption of a Value Framework in which quantitative assessment of the science benefits of space-and air-borne assets is a key element. Given pre-defined A-CCP science objectives and geophysical variables with desired accuracies, A-CCP relies on a spectrum of Observing System Simulation Experiments (OSSEs) aimed at addressing pixel level retrieval uncertainties and sampling trade-offs. In this talk we will discuss a subset of Retrieval OSSEs being considered for A-CCP, namely, synergistic lidar-polarimeter retrievals of particular relevance for the A-CCP aerosol science objectives. Starting with aerosol states from the GEOS-5 Nature Run (G5NR) sampled along specific satellite orbits, we simulate polarized radiances at the desired polarimeter wavelengths with the Vector Linearized Direct Ordinate Radiative Transfer (VLIDORT) model, alongside the lidar signal for the relevant lidars with realistic error characterization. Next, inversions are performed with the Generalized Retrieval of Aerosol and Surface Properties (GRASP) system and the accuracy of the retrieved geophysical variables are assessed. In this presentation we will highlight results for key architectures being considered for A-CCP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []