The relationship between genetic variability and growth rate among populations of the pocket gopher, Thomomys bottae

2003 
Perhaps the oldest unresolved debate inconservation genetics is whether geneticvariability matters – in other words, whetherrelatively low average genetic variationcontributes to deficits in individual andpopulation level vigor and fitness. Using astatistically powerful paired sampling designin which each of three pairs of populationsconsisted of one high genetic variability andone low genetic variability population from aparticular subspecies of the pocket gopher,Thomomys bottae, we tested the hypothesisthat individuals from populations with lowergenetic variability have lower growth rates (acommonly used surrogate for fitness) than thosefrom populations with higher variability. Wemeasured genetic variability using averageallozyme heterozygosity and two measures of DNAfingerprint band sharing (Jeffreys 33.15 andMS1 probes). The population rankings of thelevels of genetic variability among the threemeasures were concordant. The least squaresmean growth rate (controlling for sex,subspecies and initial mass) of gophers fromlow variability populations (0.41 ± 0.06g/day, n = 48) was less than half that ofgophers from high variability populations (1.04± 0.07 g/day, n = 45). This result lendscredence to the premise that differences inpopulation level genetic variability havesignificant fitness consequences andunderscores the importance of maintaininggenetic variability in managed populations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    18
    Citations
    NaN
    KQI
    []