Chromatin remodelling and chromosome damage distribution

2006 
Histone acetylation/deacetylation constitute the most relevant chromatin remodelling mechanism to control DNA access to nuclear machinery as well as to mutagenic agents. Thus, these epigenetics mechanisms could be involved in processing DNA lesions into chromosomal aberrations. Although radiation-induced DNA lesions are believed to occur randomly, in most cases chromosome breakpoints appear distributed in a non-random manner. In order to study the distribution of chromosome damage induced by clastogenic agents in relation to chromosome histone acetylation patterns, an experimental model based on treating Chinese hamster cells with endonucleases and ionizing radiations as well as immunolabelling metaphase chromosomes with antibodies to acetylated histone H4 was developed. The analysis of intra- and interchromosome breakpoint distribution has been carried out on G-banded chromosomes, and results obtained were correlated with chromosome acetylated histone H4 profiles. A co-localization of intrachromosomal breakpoints induced by AluI, BamHI and DNase I as well as by neutrons and g-rays was observed. Radiationand endonuclease-induced breakpoints tend to cluster in less condensed chromosome regions (G-light bands) that show the highest levels of acetylated histone H4. The analysis of interchromosomal distribution of radiationinduced lesions showed a concentration of breakpoints in Chinese hamster chromosomes with particular histone acetylation patterns. The fact that chromosome breakpoints occur more frequently in transcriptionally competent chromosome regions suggests that chromatin conformation and nuclear architecture could play a role in the distribution of chromosome lesions. Human & Experimental Toxicology (2006) 25, 539 � 545
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    14
    Citations
    NaN
    KQI
    []