Room temperature bulk diamond 13-C hyperpolarisation -- Strong evidence for a complex four spin coupling

2017 
Hyperpolarisation at room temperature is one of the most important research fields in order to improve liquid, gas or nanoparticle tracer for Magnetic Resonance Imaging (MRI) in medical applications. In this paper we utilize nuclear magnetic resonance (NMR) to investigate the hyperpolarisation effect of negatively charged nitrogen vacancy (NV) centres on carbon-13 nuclei and their spin diffusion in a diamond single crystal close to the excited state level anti crossing (ESLAC) around 50 mT. Whereas the electron spins of the NV centre can be easily polarized in its m = 0 ground state at room temperature just by irradiation with green light , the swop of the NV electron spin polarization to a carbon-13 nuclei is a complex task. We found that the coupling between the polarized NV electron spin, the electron spin of a substitutional nitrogen impurity (P1) as well as its nitrogen-14 nuclei and the carbon-13 nuclear spin has to be considered. Here we show that through an optimization of this procedure, in about two minutes a signal to noise ratio which corresponds to a 23 hour standard measurement without hyperpolarisation and an accumulation of 460 single scans can be obtained. Furthermore we were able to identify several polarisation peaks of different sign at different magnetic fields in a region of some tens of gauss. Most of the peaks can be attributed to a coupling of the NV centres to nearby P1 centres. We present a new theoretical model in a framework of cross polarisation of a four spin dynamic model in good agreement with our experimental data. The results demonstrate the opportunities and power as well as limitations of hyperpolarisation in diamond via NV centres. We expect that the current work may have a significant impact on future applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    2
    Citations
    NaN
    KQI
    []