The gas exchange performance of the European blackberry (Rubus fruticosus agg.) and ecological traits for interpreting colonization in forest canopy gaps

2017 
AbstractBlackberry is a considerable weed in both antropogenous habitats and semi-natural vegetation, and this results in robust colonization in open sites. Our research investigated the carbon gain and water exchange performance of this species under ecologically contrasted forest gap conditions in temperate deciduous forests. We used a Kruskal–Wallis test to assess this species ecophysiological behaviour in response to the functional relevance of light environment, seasons and forest gap character. Our research also confirmed significant relationships between abundance, gap characteristics and light response measures. Light environment plays an essential role in the development of assimilation and water use efficiency. Seasonal variation affects transpiration, and forest type influences stomatal conductance. The amount of precipitation and canopy gap size is linked to the relative abundance of the species. These characteristics integrate with a nitrogen biomass trade-off across forest types. Measures of...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []