The transition from columnar to equiaxed dendritic growth in proeutectic, low-volume fraction copper, Pb−Cu alloys

1992 
Lead, 17.1, 11.2, and 5 volume fraction copper (14, 9, and 4 wt pct Cu) alloys have been directionally solidified at constant growth velocities ranging from 1 to 100 μm s−1. Serially increasing the growth velocity within this range results in a graded microstructural transition from fully columnar, albeit segregated, copper dendrites in a lead matrix to one consisting only of equiaxed grains. The imposed velocity necessary to effect fully equiaxed growth is found to drop rapidly as the volume fraction of copper is decreased. Factors which complicate the controlled, directional solidification of these alloys are discussed and the experimental results are interpreted in view of, and seen to be in qualitative agreement with, Hunt’s theory on the transition from columnar to equiaxed growth of dendrites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    7
    Citations
    NaN
    KQI
    []