Binary population synthesis and SNIa rates

2013 
Despite the significance of type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. We investigate the potential contribution to the SNeIa rate from the most common progenitor channels using the binary population synthesis (BPS) code SeBa. Using SeBa, we aim constrain binary processes such as the common envelope phase and the efficiency of mass retention of white dwarf accretion. We find that the simulated rates are not sufficient to explain the observed rates. Further, we find that the mass retention efficiency of white dwarf accretion significantly influences the rates, but does not explain all the differences between simulated rates from different BPS codes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    1
    Citations
    NaN
    KQI
    []