Synergism studies with binary mixtures of pyrethroid, carbamate and organophosphate insecticides on Frankliniella occidentalis (Pergande).
2007
The major mechanism of resistance to most insecticides in Frankliniella occidentalis (Pergande) is metabolic, piperonyl butoxide (PBO) suppressible, mediated by cytochrome-P450 monooxygenases and conferring cross-resistance among insecticide classes. The efficacy of insecticide mixtures of acrinathrin, methiocarb, formetanate and chlorpyrifos was studied by topical exposure in strains of F. occidentalis selected for resistance to each insecticide. The method consisted in combining increasing concentrations of one insecticide with a constant low rate of the second one as synergist. Acrinathrin activity against F. occidentalis was enhanced by carbamate insecticides, methiocarb being a much better synergist than formetanate. Monooxygenase action on the carbamates would prevent degradation of the pyrethroid, hence providing a level of synergism by competitive substrate inhibition. However, the number of insecticides registered for control of F. occidentalis is very limited, and they are needed for antiresistance strategies such as mosaics and rotations. Therefore, a study was made of the synergist effect of other carbamates not used against thrips, such as carbofuran and carbosulfan, against a susceptible strain and a field strain. Neither carbamate showed synergism to acrinathrin in the susceptible strain, but both did in the field strain, carbosulfan being a better synergist than carbofuran. The data obtained indicate that low rates of carbamates could be used as synergists to restore some pyrethroid susceptibility in F. occidentalis. Copyright © 2007 Society of Chemical Industry
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
37
Citations
NaN
KQI