Structure, Phase Composition, and Thermoelectric Properties of YbxCo4Sb12 and Their Dependence on Synthesis Method

2017 
We present a combined microscopic and macroscopic study of YbxCo4Sb12 skutterudites for a range of nominal filling fractions, 0.15 < x < 0.75. The samples were synthesized using two different methods — a melt–quench–annealing route in evacuated quartz ampoules and a non-equilibrium ball-mill route — for which we directly compare the crystal structure and phase composition as well as the thermoelectric properties. Rietveld refinements of high-quality neutron powder diffraction data reveal about a 30–40% smaller Yb occupancy on the crystallographic 2a site than nominally expected for both synthesis routes. We observe a maximum filling fraction of at least 0.439(7) for a sample synthesized by the ball-mill routine, exceeding theoretical predictions of the filling fraction limit of 0.2–0.3. A single secondary phase of CoSb2 is observed in ball-mill-synthesized samples, while two secondary phases, CoSb2 and YbSb2, are detected for samples prepared by the ampoule route. A detrimental influence of the secondary ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    13
    Citations
    NaN
    KQI
    []