Genome classification improvements based on k-mer intervals in sequences

2018 
Abstract Given the vast amount of genomic data, alignment-free sequence comparison methods are required due to their low computational complexity. k-mer based methods can improve comparison accuracy by extracting an effective feature of the genome sequences. The aim of this paper is to extract k-mer intervals of a sequence as a feature of a genome for high comparison accuracy. In the proposed method, we calculated the distance between genome sequences by comparing the distribution of k-mer intervals. Then, we identified the classification results using phylogenetic trees. We used viral, mitochondrial (MT), microbial and mammalian genome sequences to perform classification for various genome sets. We confirmed that the proposed method provides a better classification result than other k-mer based methods. Furthermore, the proposed method could efficiently be applied to long sequences such as human and mouse genomes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    5
    Citations
    NaN
    KQI
    []