ResponZIF Structures: Zeolitic Imidazolate Frameworks as Stimuli-Responsive Materials.
2021
Zeolitic imidazolate frameworks (ZIFs) have long been recognized as a prominent subset of the metal-organic framework (MOF) family, in part because of their ease of synthesis and good thermal and chemical stability, alongside attractive properties for diverse potential applications. Prototypical ZIFs like ZIF-8 have become embodiments of the significant promise held by porous coordination polymers as next-generation designer materials. At the same time, their intriguing property of experiencing significant structural changes upon the application of external stimuli such as temperature, mechanical pressure, guest adsorption, or electromagnetic fields, among others, has placed this family of MOFs squarely under the umbrella of stimuli-responsive materials. In this review, we provide an overview of the current understanding of the triggered structural and electronic responses observed in ZIFs (linker and bond dynamics, crystalline and amorphous phase changes, luminescence, etc.). We then describe the state-of-the-art experimental and computational methodology capable of shedding light on these complex phenomena, followed by a comprehensive summary of the stimuli-responsive nature of four prototypical ZIFs: ZIF-8, ZIF-7, ZIF-4, and ZIF-zni. We further expose the relevant challenges for the characterization and fundamental understanding of responsive ZIFs, including how to take advantage of their flexible properties for new application avenues.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
297
References
0
Citations
NaN
KQI