Compression of Spin-Adapted Multi-Configurational Wave Functions in Exchange-Coupled Polynuclear Spin Systems

2020 
We present a protocol based on unitary transformations of molecular orbitals to reduce the number of nonvanishing coefficients of spin-adapted configuration interaction expansions. Methods that exploit the sparsity of the Hamiltonian matrix and compactness of its eigensolutions, such as the full configuration interaction quantum Monte Carlo (FCIQMC) algorithm in its spin-adapted implementation, are well suited to this protocol. The wave function compression resulting from this approach is particularly attractive for antiferromagnetically coupled polynuclear spin systems, such as transition-metal cubanes in biocatalysis, and Mott and charge-transfer insulators in solid-state physics. Active space configuration interaction calculations on N2 and CN– at various bond lengths, the stretched square N4 compounds, the chromium dimer, and a [Fe2S2]2– model system are presented as a proof-of-concept. For the Cr2 case, large and intermediate bond distances are discussed, showing that the approach is effective in cases where static and dynamic correlations are equally important. The [Fe2S2]2– case shows the general applicability of the method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    14
    Citations
    NaN
    KQI
    []