Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors.

2015 
Summary Mitochondrial division is essential for mitosis and metazoan development, but a mechanistic role in cancer biology remains unknown. Here, we examine the direct effects of oncogenic RAS G12V -mediated cellular transformation on the mitochondrial dynamics machinery and observe a positive selection for dynamin-related protein 1 (DRP1), a protein required for mitochondrial network division. Loss of DRP1 prevents RAS G12V -induced mitochondrial dysfunction and renders cells resistant to transformation. Conversely, in human tumor cell lines with activating MAPK mutations, inhibition of these signals leads to robust mitochondrial network reprogramming initiated by DRP1 loss resulting in mitochondrial hyper-fusion and increased mitochondrial metabolism. These phenotypes are mechanistically linked by ERK1/2 phosphorylation of DRP1 serine 616; DRP1 S616 phosphorylation is sufficient to phenocopy transformation-induced mitochondrial dysfunction, and DRP1 S616 phosphorylation status dichotomizes BRAF WT from BRAF V600E -positive lesions. These findings implicate mitochondrial division and DRP1 as crucial regulators of transformation with leverage in chemotherapeutic success.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    215
    Citations
    NaN
    KQI
    []