NJML: A Hybrid Algorithm for the Neighbor-Joining and Maximum-Likelihood Methods

2000 
In the reconstruction of a large phylogenetic tree, the most difficult part is usually the problem of how to explore the topology space to find the optimal topology. We have developed a ‘‘divide-and-conquer’’ heuristic algorithm in which an initial neighbor-joining (NJ) tree is divided into subtrees at internal branches having bootstrap values higher than a threshold. The topology search is then conducted by using the maximum-likelihood method to reevaluate all branches with a bootstrap value lower than the threshold while keeping the other branches intact. Extensive simulation showed that our simple method, the neighbor-joining maximum-likelihood (NJML) method, is highly efficient in improving NJ trees. Furthermore, the performance of the NJML method is nearly equal to or better than existing time-consuming heuristic maximum-likelihood methods. Our method is suitable for reconstructing relatively large molecular phylogenetic trees (number of taxa $ 16).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    53
    Citations
    NaN
    KQI
    []