A Determination of the Hubble Constant Using Measurements of X-Ray Emission and the Sunyaev-Zeldovich Effect at Millimeter Wavelengths in the Cluster Abell 1835
2000
We present a determination of the Hubble constant and central electron density in the cluster Abell 1835 (z = 0.2523) from measurements of X-ray emission and millimeter-wave observations of the Sunyaev-Zeldovich (S-Z) effect with the Sunyaev-Zeldovich Infrared Experiment (SuZIE) multifrequency array receiver. Abell 1835 is a well studied cluster in the X-ray with a large central cooling flow. Using a combination of data from ROSAT PSPC and HRI images and millimeter wave measurements we fit a King model to the emission from the ionized gas around Abell 1835 with θ0 = 0farcm22 ± 0farcm02 and β = 0.58 ± 0.02. Assuming the cluster gas to be isothermal with a temperature of 9.8img1.gif keV, we find a y-parameter of 4.9 ± 0.6 × 10-4 and a peculiar velocity of 500 ± 1000 km s-1 from measurements at three frequencies, 145, 221, and 279 GHz. Combining the S-Z measurements with X-ray data, we determine a value for the Hubble constant of H0 = 59img2.gif km s-1 Mpc-1 and a central electron density for Abell 1835 of ne0 = 5.64img3.gif × 10-2 cm-3 assuming a standard cosmology with Ωm = 1 and ΩΛ = 0. The error in the determination of the Hubble constant is dominated by the uncertainty in the temperature of the X-ray emitting cluster gas.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
33
References
35
Citations
NaN
KQI