Heat capacity changes associated with guanine quadruplex formation: An isothermal titration calorimetry study

2008 
This study addresses the temperature dependence of the enthalpy of formation for several unimolecular quadruplexes in the presence of excess monovalent salt. We examined a series of biologically significant guanine-rich DNA sequences: thrombin binding aptamer (TBA) (d(G2T2G2TGTG2T2G2), PS2.M, a catalytically active aptamer (d(GTG3TAG3CG3T2G2)), and the human telomere repeat (HT) (d(AG3(T2AG3)3)). Using CD spectra and UV melting, we confirmed the presence of quadruplex structures and established the temperature range in which quadruplex conformation is stable. We then performed ITC experiments, adding DNA to a solution containing excess NaCl or KCl. In this approach, only several additions are made, and only the enthalpy of quadruplex formation is measured. This measurement was repeated at different temperatures to determine the temperature dependence of the enthalpy change accompanying quadruplex formation. To control for the effect of nonspecific salt interactions during DNA folding, we repeated the experiment by replacing the quadruplex-forming sequences with a similar but nonfolding sequence. Dilution enthalpies were also subtracted to obtain the final enthalpy value involving only the quadruplex folding process. For all sequences studied, quadruplex formation was exothermic but with an increasing magnitude with increasing temperature. These results are discussed in terms of the change in heat capacity associated with quadruplex formation. © 2008 Wiley Periodicals, Inc. Biopolymers 89: 302–309, 2008. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    38
    Citations
    NaN
    KQI
    []