Absolute negative mobility induced by fractional Gaussian noise

2020 
Abstract Transport of underdamped Brownian particles driven by fractional Gaussian noise in a periodic potential is numerically investigated in the presence of a dc force and an ac force. Within particular parameter regimes, this system exhibits absolute negative mobility, which means that the particles can travel in the direction opposite to the constant force. We demonstrate that fractional Gaussian noise can strongly affect the appearance of the absolute negative mobility. It is found that fraction Gaussian noise in the persistent case can induce the appearance of double absolute negative mobility in two different parameter ranges, while the absolute negative mobility occurs in only one parameter interval in the antipersistent case. As the Hurst exponent increases, the negative mobility strengthens monotonously for the persistent case, whereas the change in Hurst exponent hardly affects the transport behavior for the antipersistent case.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    0
    Citations
    NaN
    KQI
    []