Metformin ameliorates BSCB disruption by inhibiting neutrophil infiltration and MMP‐9 expression but not direct TJ proteins expression regulation

2017 
Blood-spinal cord barrier (BSCB) disruption is a major process for the secondary injury of spinal cord injury (SCI) and is considered to be a therapeutic target for SCI. Previously, we demonstrated that metformin could improve functional recovery after SCI; however, the effect of metformin on BSCB is still unknown. In this study, we found that metformin could prevent the loss of tight junction (TJ) proteins at day 3 after SCI in vivo, but in vitro there was no significant difference of these proteins between control and metformin treatment in endothelial cells. This indicated that metformin-induced BSCB protection might not be mediated by up-regulating TJ proteins directly, but by inhibiting TJ proteins degradation. Thus, we investigated the role of metformin on MMP-9 and neutrophils infiltration. Neutrophils infiltration is the major source of the enhanced MMP-9 in SCI. Our results showed that metformin decreased MMP-9 production and blocked neutrophils infiltration at day 1 after injury, which might be related to ICAM-1 down-regulation. Also, our in vitro study showed that metformin inhibited TNF-α-induced MMP-9 up-regulation in neutrophils, which might be mediated via an AMPK-dependent pathway. Together, it illustrated that metformin prevented the breakdown of BSCB by inhibiting neutrophils infiltration and MMP-9 production, but not by up-regulating TJ proteins expression. Our study may help to better understand the working mechanism of metformin on SCI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    21
    Citations
    NaN
    KQI
    []