Structural and Electrochemical Characterization of PureLiFePO4and Nanocomposite C-LiFePO4Cathodes for Lithium Ion Rechargeable Batteries
2009
Pure lithium iron phosphate () and carbon-coated (C-) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on particles. Ex situ Raman spectrum of C- at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of and C- showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for where as in case of C- that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure was 69% after 25 cycles where as that of C- was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.
Keywords:
- Correction
- Cite
- Save
- Machine Reading By IdeaReader
49
References
0
Citations
NaN
KQI