Synthesis of CsCl-type single-phase RuSi under shock compression

2013 
Shock recovery experiments were performed on ruthenium–silicon powder mixtures by a flyer plate impact technique. The flyer velocities were in the range of 0.46–2.73 km/s, and the incident shock pressures were calculated to be ∼2.9–∼40.4 GPa by the impedance matching method. The recovered samples were characterized by X-ray diffraction and scanning electron microscopy. Results indicate that shock could induce a reaction between ruthenium and silicon. The shock pressure was found to affect reaction kinetics and microstructure of the recovered sample significantly. The dynamic reaction has a threshold pressure, and the samples loaded above threshold pressure almost completely reacted to a single-phase intermetallic compound of CsCl-type RuSi. These results indicate that shock compression could be an effective way to synthesize RuSi.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    4
    Citations
    NaN
    KQI
    []