Potential shifts in climate zones under a future global warming scenario using soil moisture classification

2021 
Climate zones fundamentally shape the patterns of the terrestrial environment and human habitation. How global warming alters their current distribution is an important question that has yet to be properly addressed. Using root-layer soil moisture as an indicator, this study investigates potential future changes in climate zones with the perturbed parameter ensemble of climate projections by the HadGEM3-GC3.05 model under the CMIP5 RCP8.5 scenario. The total area of global drylands (including arid, semiarid, and subhumid zones) can potentially expand by 10.5% (ensemble range is 0.6–19.0%) relative to the historical period of 1976–2005 by the end of the 21st century. This global rate of dryland expansion is smaller than the estimate using the ratio between annual precipitation total and potential evapotranspiration (19.2%, with an ensemble range of 6.7–33.1%). However, regional expansion rates over the mid-high latitudes can be much greater using soil moisture than using atmospheric indicators alone. This result is mainly because of frozen soil thawing and accelerated evapotranspiration with Arctic greening and polar warming, which can be detected in soil moisture but not from atmosphere-only indices. The areal expansion consists of 7.7% (–8.3 to 23.6%) semiarid zone growth and 9.5% (3.1–20.0%) subhumid growth at the expense of the 2.3% (–10.4 to 7.4%) and 12.6% (–29.5 to 2.0%) contraction of arid and humid zones. Climate risks appear in the peripheries of subtype zones across drylands. Potential alteration of the traditional humid zone, such as those in the mid-high latitudes and the Amazon region, highlights the accompanying vulnerability for local ecosystems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    3
    Citations
    NaN
    KQI
    []