Computing the distance to continuous-time instability of quadratic matrix polynomials

2020 
A bisection method is used to compute lower and upper bounds on the distance from a quadratic matrix polynomial to the set of quadratic matrix polynomials having an eigenvalue on the imaginary axis. Each bisection step requires to check whether an even quadratic matrix polynomial has a purely imaginary eigenvalue. First, an upper bound is obtained using Frobenius-type linearizations. It takes into account rounding errors but does not use the even structure. Then, lower and upper bounds are obtained by reducing the quadratic matrix polynomial to a linear palindromic pencil. The bounds obtained this way also take into account rounding errors. Numerical illustrations are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    1
    Citations
    NaN
    KQI
    []