Poisson geometry and representations of PI 4-dimensional Sklyanin algebras
2021
Take S to be a 4-dimensional Sklyanin (elliptic) algebra that is module-finite over its center Z; thus, S is PI. Our first result is the construction of a Poisson Z-order structure on S such that the induced Poisson bracket on Z is non-vanishing. We also provide the explicit Jacobian structure of this bracket, leading to a description of the symplectic core decomposition of the maximal spectrum Y of Z. We then classify the irreducible representations of S by combining (1) the geometry of the Poisson order structures, with (2) algebro-geometric methods for the elliptic curve attached to S, along with (3) representation-theoretic methods using line and fat point modules of S. Along the way, we improve results of Smith and Tate obtaining a description the singular locus of Y for such S. The classification results for irreducible representations are in turn used to determine the zero sets of the discriminants ideals of these algebras S.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
0
Citations
NaN
KQI