Spherical accretion flow onto general parameterized spherically symmetric black hole spacetimes

2021 
The transonic phenomenon of black hole accretion and the existence of the photon sphere characterize strong gravitational fields near a black hole horizon. Here, we study the spherical accretion flow onto general parametrized spherically symmetric black hole spacetimes. We analyze the accretion process for various perfect fluids, such as the isothermal fluids of ultra-stiff, ultra-relativistic, and sub-relativistic types, and the polytropic fluid. The influences of additional parameters, beyond the Schwarzschild black hole in the framework of general parameterized spherically symmetric black holes, on the flow behavior of the above-mentioned test fluids are studied in detail. In addition, by studying the accretion of the ideal photon gas, we further discuss the correspondence between the sonic radius of the accreting photon gas and the photon sphere for general parameterized spherically symmetric black holes. Possible extensions of our analysis are also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    4
    Citations
    NaN
    KQI
    []