Direct synthesis of Al-SBA-15 mesoporous materials via hydrolysis-controlled approach
2004
Aluminum-substituted mesoporous SBA-15 (Al−SBA-15) materials were directly synthesized by a hydrolysis-controlled approach in which the hydrolysis of the silicon precursor (tetraethyl orthosilicate, TEOS) is accelerated by fluoride or by using tetramethyl orthosilicate (TMOS) as silicon precursor rather than TEOS. These materials were characterized by powder X-ray diffraction (XRD), N2 sorption isotherms, TEM, 27Al MAS NMR, IR spectra of pyridine adsorption, and NH3-TPD. It is found that the matched hydrolysis and condensation rates of silicon and aluminum precursors are important factors to achieve highly ordered mesoporous materials. 27Al MAS NMR spectra of Al−SBA-15 show that all aluminum species were incorporated into the silica framework for the samples prepared with the addition of fluoride. A two-step approach (sol−gel reaction at low pH followed by crystallization at high pH) was also employed for the synthesis of Al−SBA-15. Studies show that the two-step approach could efficiently avoid the leach...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
42
References
214
Citations
NaN
KQI