Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria

2005 
The existence of anaerobic ammonium oxidation (anammox) was hypothesized based on nutrient profiles and thermodynamic calculations (5, 31, 44). It was first discovered about 1 decade ago (25) in a pilot plant treating wastewater from a yeast-producing company in Delft, The Netherlands. The anammox reaction is the oxidation of ammonium under anoxic conditions with nitrite as the electron acceptor and dinitrogen gas as the product. Hydroxylamine and hydrazine were identified as important intermediates (51). Due to their very low growth rates (doubling time in enrichments is at best 11 days) the cultivation of the anammox bacteria proved to be tedious and required very efficient biomass retention (41, 43). A physical purification of anammox organisms from enrichment cultures was achieved with percoll density centrifugation (42). The purified cells performed the anammox reaction after activation by hydrazine. Based on phylogenetic analysis, the discovered anammox organism branched deep in the Planctomycetes phylum (Fig. 1A and B, [42]) and was named “Candidatus Brocadia anammoxidans” (19). FIG. 1. (A) 16S rRNA gene-based phylogenetic tree reflecting the relationship of “Ca. Scalindua,” “Ca. Brocadia,” and “Ca. Kuenenia” to other Planctomycetes and other reference organisms. Tree reconstruction was ... After the first discovery, nitrogen losses, which could only be explained by the anammox reaction, were reported in other wastewater treatment facilities including landfill leachate treatment plants in Germany, Switzerland, and England (11, 14, 15, 36), as well as in semitechnical wastewater treatment plants in Germany (34), Belgium (30), Japan (12), Australia (48), and the United States (10, 45). Molecular techniques showed the presence of organisms affiliated with the anammox branch within the Planctomycetes in all these wastewater treatment plants. Nutrient profiles and 15N tracer studies in suboxic marine and estuarine environments indicated that anammox is also a key player in the marine nitrogen cycle (8, 46, 49). In addition, 16S rRNA gene analysis, fluorescence in situ hybridization (FISH), the distribution of specific anammox membrane lipids, nutrient profiles, and tracer experiments with [15N]ammonia showed the link between the anammox reaction and the occurrence of the anammox bacterium “Candidatus Scalindua sorokinii” in the suboxic zone of the Black Sea (20). The anammox reaction has also been tested for implementation for full-scale removal of ammonia in wastewater treatment (13, 52, 53). The detection and identification of active anammox organisms in environmental samples combined with information on environmental conditions can facilitate the search for possible biomass sources to be used as an inoculum for laboratory, semitechnical, or full-scale anammox reactors. Additionally, such information could provide insights into the niche differentiation of anammox organisms. This review summarizes the recent advances made in the 16S rRNA gene-based techniques for the detection of anammox bacteria. A convenient PCR detection method for anammox organisms is presented in which anammox-specific FISH probes were used as primers. Furthermore, methods which link activity and the detection of anammox bacteria, such as the combination of FISH and microautoradiography (FISH-MAR) (22) as well as FISH targeting the intergenic spacer region (ISR) between the 16S and 23S rRNA are discussed and compared to conventional methods to detect anammox activity. Each of these approaches by itself only addresses limited aspects, such as abundance, activity, or physiology. Thus, a combination of rRNA-based and non-rRNA-based methods is necessary to allow a comprehensive study of anammox bacteria in their ecosystems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    329
    Citations
    NaN
    KQI
    []