Identification and characterization of tumorigenic circular RNAs in cervical cancer.
2020
Abstract Circular RNAs (circRNAs) are a distinctive family of ncRNAs, and they function as key regulators in the initiation, development and progression of various diseases. However, the regulatory roles of circRNAs in the tumorigenesis of cervical cancer (CC) have not been fully understood. In this study, we identified a set of circRNAs in CC and paired normal tissues, using RNA sequencing data, and found that the cancer and normal tissues could be told apart by those differentially expressed (DE) circRNAs, indicating that circRNA expression profiles in CC were significantly different from those in the normal tissues. Meanwhile, the upregulated genes in CC were enriched in inflammation-related pathways, and the correlation analysis between the DE circRNAs and genes revealed that the abundance of DE circRNAs was positively related to the expression of their host genes. However, the expression of TGFBR2 and KDM4C were found to exhibit a negative correlation with their corresponding circRNAs. Furthermore, we also predicted the interactions between circRNAs and proteins, and constructed a competing endogenous RNA (ceRNA) network. Specifically, hsa_circ_0001495 was predicted to interact with ESRP2, and acted as a sponge by competing for miRNAs with TBL1XR1. Functionally, hsa_circ_0001495 was predicted to regulate epithelial cell proliferation and NOTCH signaling via ESRP2 and TBL1XR1, respectively. We also evaluated the prognostic values of downstream target genes of selected circRNAs, using clinical records of CC patients. In summary, the present study provided some regulatory circRNAs involved in CC tumorigenesis based on bioinformatics approaches, which brought strong evidences for researchers to further explore their biological and clinical values.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
9
Citations
NaN
KQI