Implication of STARD5 and cholesterol homeostasis disturbance in the endoplasmic reticulum stress-related response induced by pro-apoptotic aminosteroid RM-133

2018 
Abstract The aminosteroid derivative RM-133 is an effective anticancer molecule for which proof of concept has been achieved in several mouse xenograph models (HL-60, MCF-7, PANC-1 and OVCAR-3). To promote this new family of molecules toward a clinical phase 1 trial, the mechanism of action governing the anticancer properties of the representative candidate RM-133 needs to be characterized. In vitro experiments were first used to determine that RM-133 causes apoptosis in cancer cells. Then, using proteomic and transcriptomic experiments, RM-133 cytotoxicity was proven to be achieved via the endoplasmic reticulum (ER)-related apoptosis, which characterizes RM-133 as an endoplasmic reticulum stress aggravator (ERSA) anticancer drug. Furthermore, an shRNA-genome-wide screening has permitted to identify the steroidogenic acute regulator-related lipid transfer protein 5 (STARD5) as a major player in the RM-133 ER-related apoptosis mechanism, which was validated by an in vitro binding experiment. Altogether, the results presented herein suggest that RM-133 provokes a disturbance of cholesterol homeostasis via the implication of STARD5, which delivers an ERSA molecule to the ER. These results will be a springboard for RM-133 in its path toward clinical use.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    5
    Citations
    NaN
    KQI
    []