ARHGEF3 Associated with Invasion, Metastasis, and Proliferation in Human Osteosarcoma.

2021 
Background. Osteosarcoma is a malignant bone tumor composed of mesenchymal cells producing osteoid and immature bone. This study is aimed at developing novel potential prognostic biomarkers and constructing a miRNA-mRNA network for progression in osteosarcoma. Method. GSE70367 and GSE70414 were obtained in the Gene Expression Omnibus (GEO) database. GEO software and the GEO2R calculation method were used to analyze two gene profiles. The coexpression of differentially expressed miRNAs (DEMs) and genes (DEGs) was identified and searched for in the FunRich database for pathway and ontology analysis. Cytoscape was utilized to construct the mRNA-miRNA network. Survival analysis of identified miRNAs and mRNAs was performed by utilizing the Kaplan-Meier Plotter. Besides, expression levels of DEMs and target mRNAs were verified by performing quantitative real-time PCR (qRT-PCR) and Western blot (WB). Results. Six differentially expressed microRNAs (DEMs) were identified, and 8 target genes were selected after screening. By using the KM Plotter software, miRNA-124 and ARHGEF3 were obviously associated with the overall survival of patients with osteosarcoma. Furthermore, ARHGEF3 was found downregulated in osteosarcoma cells by performing qRT-PCR and WB experiments. Results also showed that downregulated ARHGEF3 may associate with invasion, metastasis, and proliferation. Conclusions. By using microarray and bioinformatics analysis, DEMs were selected, and a complete miRNA-mRNA network was constructed. ARHGEF3 may act as a therapeutic and prognostic target of osteosarcoma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []