A novel SDN based stealthy TCP connection handover mechanism for hybrid honeypot systems

2017 
Honeypots have been largely used to capture and investigate malicious behavior through deliberately sacrificing their own resources in order to be attacked. Hybrid honeypot architectures consisting of frontends and backends are widely used in the research area, specially due to the benefits of their high scalability and fidelity for detailed attacking data collection. A hybrid honeypot system often needs a facility aimed to tightly control the network traffic, for purposes such as redirecting the traffic from the frontends to the backends for in-depth attack analysis. However, the current traffic redirection approaches, particularly the TCP connection handover mechanisms, are not stealthy and they can be easily detected by attackers. This paper proposes an SDN based network data controller for hybrid honeypot systems that uses a transparent TCP connection handover mechanism and provides a traffic filtering approach based on the Snort alert functionality. The controller is implemented as an application based on the open-source Ryu SDN framework. It allows the users to configure their own network data control rules, which based on the Snort alert messages will forward or redirect the traffic to the corresponding honeypots. The experiments validate the proposed mechanism and the testing results show that the controller can efficiently perform the stealthy TCP connection handover as well.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    13
    Citations
    NaN
    KQI
    []