Tuning the Built-in Electric Field in Ferroelectric Pb(Zr0.2Ti0.8)O3 Films for Long-Term Stability of Single-Digit Nanometer Inverted Domains

2012 
The emergence of new technologies, such as whole genome sequencing systems, which generate a large amount of data, is requiring ultrahigh storage capacities. Due to their compactness and low power consumption, probe-based memory devices using Pb(Zr0.2Ti0.8)O3 (PZT) ferroelectric films are the ideal candidate for such applications where portability is desired. To achieve ultrahigh (>1 Tbit/in2) storage densities, sub-10 nm inverted domains are required. However, such domains remain unstable and can invert back to their original polarization due to the effects of an antiparallel built-in electric field in the PZT film, domain-wall, and depolarization energies. Here, we show that the built-in electric-field can be tuned and suppressed by repetitive hydrogen and oxygen plasma treatments. Such treatments trigger reversible Pb reduction/oxidation activity, which alters the electrochemistry of the Pb overlayer and compensates for charges induced by the Pb vacancies. This tuning mechanism is used to demonstrate t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    13
    Citations
    NaN
    KQI
    []