Transcriptome-based phylogeny and whole-genome duplication in Theaceae
2021
Theaceae, with three tribes and nine genera, is a family of great economic and ecological importance. Recent phylogenetic analyses based on plastid genome resolved the relationship among three tribes and the intergeneric relationships within Gordonieae and Stewartieae. However, generic level relationships within the largest tribe Theeae were not fully resolved and potential hybridization among genera within Theeae revealed previously also remains to be tested further. Here we conducted a comprehensive phylogenomic study of Theaceae based on transcriptomes and low-depth whole-genome sequencing of 57 species as well as additional plastome sequence data from previous work. Phylogenetic analyses suggested that Stewartieae was the first-diverging clade in Theaceae, consistent with previous study using plastomic data. Within Theeae, the highly supported Apterosperma-Laplacea clade grouped with Pyrenaria with maximum support based on the partitioned and unpartitioned concatenation analyses using the 610 low-copy nuclear genes, leaving Camellia and Polyspora as another sister genera in the tribe. PhyloNet analyses suggested one reticulation event within Camellia and Pyrenaria respectively, but no intergeneric reticulations were detected in Theeae. Another introgression was found between Gordonia lasianthus and the common ancestor of Gordonieae during the Late Oligocene. The existing land bridges (e.g. Bering land bridge) might have facilitated this ancient introgression. Further researches need to be conducted to uncover the interspecific introgression pattern within Camellia. Ks distribution analyses supported the tea family shared one whole-genome duplication (WGD) event Ad-{beta}, which was recently mapped to the clade containing core Ericales, Primuloids, Polemonioids and Lecythidaceae.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
88
References
0
Citations
NaN
KQI