language-icon Old Web
English
Sign In

Modeling ignition chemistry

1993 
An eXplosive CHEMical kinetics code, XCHEM was developed to solve the reactive diffusion equations associated with thermal ignition of energetic material. This method-of-lines code uses stiff numerical methods and adaptive meshing. Solution accuracy is maintained between multilayered materials consisting of blends of reactive components and/or inert materials. Phase change and variable properties are included in one-dimensional slab, cylindrical and spherical geometries. Temperature-dependent thermal properties was incorporated and modification of thermal conductivities to include decomposition effects are estimated using solid/gas volume fractions determined by species fractions. Gas transport properties are also included. Time varying temperature, heat flux, convective and thermal radiation boundary conditions, and layer to layer contact resistances are also implemented. The global kinetic mechanism developed at Lawrence Livermore National Laboratory (LLNL) by McGuire and Tarver used to fit One-Dimensional Time to eXplosion (ODTX) data for the conventional energetic materials (HMX, RDX, TNT, and TATB) are presented as sample calculations representative of multistep chemistry. Calculated and measured ignition times for explosive mixtures of Comp B (RDX/TNT), Octol, (HMX/TNT), PBX 9404 (HMX/NC), and RX-26-AF (HMX/TATB) are compared. Geometry and size effects are accurately modeled, and calculations are compared to experiments with time varying boundary conditions. Finally, XCHEM calculations of initiation ofmore » an AN/oil/water emulsion, resistively heated, are compared to measurements.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    3
    Citations
    NaN
    KQI
    []