Oxidation of n-Alkane (n-C8H18) under Reservoir Conditions, in Context of Gas Mixture Injection (CO2/O2): Construction of a Kinetic Model

2015 
CO2 geosequestration or enhanced oil recovery (EOR) by CO2 injection in hydrocarbon reservoirs is suggested as a short-term solution for limiting CO2 atmospheric accumulation. In the case of oxy-combustion CO2 capture, the main annex gas associated with CO2 is O-2 in important proportion (=7%). Even if hydrocarbon oxidation processes by O-2 are well-known in high-temperaturelow-pressure (HT-LP) conditions, scarce data are available under reservoir conditions (high-pressurelow-temperature, HP-LT). To predict the hydrocarbon evolution in the presence of O-2 in an oil-depleted reservoir, it is necessary to investigate their reactivity. As a matter of fact, a double approach combining experimentation and modeling was performed in this study. Experiments were carried out on a model compound (n-octane), by injecting O-2/N-2 gas mixtures in a HP-LT titanium reactor. In parallel, a detailed kinetic model for n-octane, generated by the software EXGAS, was applied. Several reactions were added, and some rate parameters have been adjusted to adapt the model to reservoir conditions. The modified model was validated by experiments performed at different reaction temperatures and O-2 concentrations. The consistency between experimentations and modified oxidation model is promising for the development of a tool allowing the prediction of hydrocarbon reservoir stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []