Information integrated glass module fabricated by integrated additive and subtractive manufacturing

2020 
In this Letter, we report a novel integrated additive and subtractive manufacturing (IASM) method to fabricate an information integrated glass module. After a certain number of glass layers are 3D printed and sintered by direct ${{\rm CO}_2}$CO2 laser irradiation, a microchannel will be fabricated on top of the printed glass by integrated picosecond laser, for intrinsic Fabry–Perot interferometer (IFPI) optical fiber sensor embedment. Then, the glass 3D printing process continues for the realization of bonding between optical fiber and printed glass. Temperature sensing up to 1000°C was demonstrated using the fabricated information integrated module. In addition, the long-term stability of the glass module at 1000°C was conducted. Enhanced sensor structure robustness and harsh temperature sensing capability make this glass module attractive for harsh environment structural health monitoring.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []