A Hybrid-Driven Optimization Framework for Fixed-Wing UAV Maneuvering Flight Planning

2021 
Performing autonomous maneuvering flight planning and optimization remains a challenge for unmanned aerial vehicles (UAVs), especially for fixed-wing UAVs due to its high maneuverability and model complexity. A novel hybrid-driven fixed-wing UAV maneuver optimization framework, inspired by apprenticeship learning and nonlinear programing approaches, is proposed in this paper. The work consists of two main aspects: (1) Identifying the model parameters for a certain fixed-wing UAV based on the demonstrated flight data performed by human pilot. Then, the features of the maneuvers can be described by the positional/attitude/compound key-frames. Eventually, each of the maneuvers can be decomposed into several motion primitives. (2) Formulating the maneuver planning issue into a minimum-time optimization problem, a novel nonlinear programming algorithm was developed, which was unnecessary to determine the exact time for the UAV to pass by the key-frames. The simulation results illustrate the effectiveness of the proposed framework in several scenarios, as both the preservation of geometric features and the minimization of maneuver times were ensured.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []