Parallel Post-Polyketide Synthase Modification Mechanism Involved in FD-891 Biosynthesis in Streptomyces graminofaciens A-8890.
2016
To isolate a key polyketide biosynthetic intermediate for the 16-membered macrolide FD-891 (1), we inactivated two biosynthetic genes coding for post-polyketide synthase (PKS) modification enzymes: a methyltransferase (GfsG) and a cytochrome P450 (GfsF). Consequently, FD-892 (2), which lacks the epoxide moiety at C8-C9, the hydroxy group at C10, and the O-methyl group at O-25 of FD-891, was isolated from the gfsF/gfsG double-knockout mutant. In addition, 25-O-methyl-FD-892 (3) and 25-O-demethyl-FD-891 (4) were isolated from the gfsF and gfsG mutants, respectively. We also confirmed that GfsG efficiently catalyzes the methylation of 2 and 4 in vitro. Further, GfsF catalyzed the epoxidation of the double bond at C8-C9 of 2 and 3 and subsequent hydroxylation at C10, to afford 4 and 1, respectively. These results suggest that a parallel post-PKS modification mechanism is involved in FD-891 biosynthesis.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
24
References
5
Citations
NaN
KQI