Heterotypic inter-GPCR β-arrestin coupling regulates lymphatic endothelial junctional architecture in murine lymph nodes

2018 
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) activate G protein-coupled receptors (GPCRs) to regulate key pathobiological processes. Here we report a novel lipid mediator GPCR cross-talk mechanism that modulates lymphatic endothelial junctional architecture in lymph nodes. LPAR1 was identified as an inducer of S1PR1/ β-arrestin coupling from a genome-wide CRISPR/ Cas9 transcriptional activation screen. LPAR1 activation induced S1PR1 β-arrestin recruitment while suppressing Gαi protein signaling. Lymphatic endothelial cells from cortical and medullary sinuses of lymph nodes which express LPAR1 and S1PR1, exhibit porous junctional architecture and constitutive S1PR1 coupling to β-arrestin which was suppressed by the LPAR1 antagonist AM095. In endothelial cells, LPAR1-activation increased trans-endothelial permeability and junctional remodeling from zipper-like structures to puncta of adhesion plaques that terminate at actin-rich stress fibers with abundant intercellular gaps. Cross-talk between LPA and S1P receptors regulates complex junctional architecture of lymphatic sinus endothelial cells, a site of high lymphocyte traffic and lymph flow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    1
    Citations
    NaN
    KQI
    []