A Palette of Efficient and Stable Far-Red and NIR Dye Lasers

2020 
The disposal of long-wavelength-emitting sources is of paramount relevance in technology and biophotonics due to the low interference with the surroundings that these kinds of far-red and near-infrared radiations hold. As a result of the continued efforts carried out during the last few years by our research group to design new boron-dipyrromethene (BODIPY) dyes with improved photonic performance, two approaches were tested to develop a new generation of organic dyes able to display efficient and long-lasting laser emission in both target spectral regions. On the one hand, the annulation of aromatic benzofuran at the dipyrrin backbone leads to conformationally restricted dyes yielding photostable and bright laser emission beyond 600 nm at the far-red spectral region. On the other hand, a more pronounced shift to longer wavelengths reaching 725 nm at the near-infrared region is feasible, while keeping a reasonably high laser efficiency and tolerance to prolonged and intense pumping, based on aza-BODIPYs bearing peripheral aryl rings. These two complementary strategies yield a library of laser-emitting compounds comprising the 600-725 nm spectral region. Moreover, their laser performance is better than the commercially available dye lasers active in this spectral window.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []