Clinical pathways scheduling using hybrid genetic algorithm.

2013 
In order to improve the standard of management in hospitals and effectively control the cost of clinical treatments, this research primarily focuses on optimizing the scheduling of clinical pathways (CPs). A mathematical model for CP scheduling is constructed, and the hybrid genetic algorithm (HGA, combining a genetic algorithm with particle swarm optimization) is proposed for solving this problem so as to distribute medical resources and schedule the treatments of patients reasonably and effectively. The optimal search space can be further enlarged by introducing a new mutation mechanism, which allows a more satisfactory solution to be found. In particular, the relative patient waiting time and relative time efficiency are used as measure indexes, which are more scientific and effective than the usual indexes of absolute time and absolute time efficiency. After comparing absolute waiting time, relative waiting time, utilization of absolute waiting time, and utilization of relative waiting time waiting respectively, the conclusion can confidently be drawn that task scheduling obviously enhances patients’ time efficiency, reduces time wastage and therefore promotes patient satisfaction with medical processes. Moreover, the patients can to a certain degree move away from their usual passive role in medical processes by using this scheduling system. In order to further validate the rationality and validity of the proposed method, the heuristic rules for CP scheduling are also tested using the same case. The results demonstrate that the proposed HGA achieves superior performance, in terms of precision, over those heuristic rules for CP scheduling. Therefore, we utilize HGA to optimize CP scheduling, thus providing a decision-making mechanism for medical staff and enhancing the efficiency of medical processes. This research has both theoretical and practical significance for electronic CP management, in particular.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    22
    Citations
    NaN
    KQI
    []