Complete Beam Dynamics of the JLEIC Ion Collider Ring Including Imperfections, Corrections, and Detector Solenoid Effects

2017 
The JLEIC is proposed as a next-generation facility for the study of strong interaction (QCD). Achieving its goal luminosity of up to 1034 cm⁻²s^{−1} requires good dynamical properties and a large dynamic aperture (DA) of ~ ±10 σ of the beam size. The limit on the DA comes primarily from non-linear dynamics, element misalignments, magnet multipole components, and detector solenoid effect. This paper presents a complete simulation including all of these effects. We first describe an orbit correction scheme and determine tolerances on element misalignments. And beta beat, betatron tunes, coupling, and linear chromaticity perturbations also be corrected. We next specify the requirements on the multipole components of the interaction region magnets, which dominate the DA in the collision mode. Finally, we take special care of the detector solenoid effects. Some of the complications are an asymmetric design necessary for a full acceptance detector with a crossing angle of 50 mrad. Thus, in addition to coupling, the solenoid causes closed orbit excursion and excites dispersion. It also breaks the figure-8 spin symmetry. We present a scheme with correction of all of these effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []