Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde

2015 
Abstract A series of two biologically active Schiff base ligands L 1 , L 2 have been synthesized in equimolar reaction of 2-aminobenzamide with pyrrol-2-carboxaldehyde and furan-2-carboxaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 2:1. The characterization of newly formed complexes was done by 1 H NMR, UV–Vis, TGA, IR, mass spectrophotometry, EPR and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and distorted octahedral geometry for Cu(II) complexes. All the synthesized compounds, were studied for their in vitro antimicrobial activities, against four bacterial strains and two fungal strains by using serial dilution method. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    24
    Citations
    NaN
    KQI
    []