Leptin attenuates lipopolysaccharide-induced apoptosis of thymocytes partially via down-regulation of cPLA2 and p38 MAPK activation.

2013 
Abstract Leptin, a 16-kDa protein that is mainly secreted by adipocytes, plays a protective role in many cell types. It has been shown that leptin acts in the central and peripheral immune system to protect thymocytes. Cytosolic phospholipase A 2 (cPLA 2 ) is an enzyme that can specifically initiate the release of arachidonic acid (AA) to produce eicosanoids, which regulate inflammation and immune responses. Our previous work has shown that leptin is important to prevent apoptosis of thymocytes. However, the role of cPLA 2 is still unclear, and the precise mechanism also remains to be elucidated. In this work, we demonstrated that leptin inhibited the LPS-induced toxicity and apoptosis of thymocytes. Western blot and RT-PCR showed that leptin led to a reduction of cPLA 2 activity and mRNA level, as well as caspase-3 cleavage. Moreover, we found that leptin could decrease the activation of p38 MAPK. Accordingly, we pre-treated apoptotic thymocytes with the p38 MAPK inhibitor, SB203580 and observed an effect similar to the leptin alone treated group. SB203580 also suppressed expression of cPLA 2 and cleavage of caspase-3. Based on these results, we suggest that leptin could attenuate LPS-induced apoptotic injury in mouse thymocyte cells, mainly through the p38/cPLA 2 signalling pathway. The study of the regulatory role of leptin in LPS-induced thymocyte apoptosis can help to explain the role of leptin in the immune system and may provide a novel treatment option in cases of severe trauma, infection, shock, organ failure and autoimmune disease caused by thymic atrophy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    14
    Citations
    NaN
    KQI
    []