Universal modeling of second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals

2018 
The second-order nonlinear frequency conversion in three-dimensional nonlinear photonic crystals is theoretically studied using coupled wave equations. A universal theoretical model is obtained, with a unified expression combining birefringence phase match, quasi-phase match, nonlinear Raman-Nath diffraction, nonlinear Cerenkov radiation and nonlinear Bragg diffraction. They are demonstrated in the numerical simulation. With the phase-matching conditions in lower dimensions extended to three dimensions, more various phenomena can be seen and corresponding mechanisms can be explained. This research enables the control of second-harmonic generation more efficiently and has potential applications in more complicated nonlinear photonic crystals.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []