Radiation dosimetry of the fibrin-binding probe 64Cu-FBP8 and its feasibility for positron emission tomography imaging of deep vein thrombosis and pulmonary embolism in rats

2015 
The diagnosis of deep venous thromboembolic disease is still challenging despite the progress of current thrombus imaging modalities and new diagnostic algorithms. We recently reported the high target uptake and thrombus imaging efficacy of the novel fibrin-specific positron emission tomography probe 64Cu-FBP8. Here, we tested the feasibility of 64Cu-FBP8-PET to detect source thrombi and culprit emboli after deep vein thrombosis and pulmonary embolism (DVT-PE). To support clinical translation of 64Cu-FBP8, we performed a human dosimetry estimation using time-dependent biodistribution in rats. Methods Sprague-Dawley rats (n=7) underwent ferric chloride application on the femoral vein to trigger thrombosis. Pulmonary embolism was induced 30 min or 2 days after deep vein thrombosis by intrajugular injection of a preformed blood clot labeled with 125I-Fibrinogen. PET imaging was performed to detect the clots, and single-photon emission tomography (SPECT) was used to confirm in vivo the location of the pulmonary emboli. Ex vivo gamma-counting and histopathology were used to validate the imaging findings. Detailed biodistribution was performed in healthy rats (n=30) at different time-points after 64Cu-FBP8 administration to estimate human radiation dosimetry. Longitudinal whole-body PET/MR imaging (n=2) was performed after 64Cu-FBP8 administration to further assess radioactivity clearance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []