Formation and characterization of high-density FeSi nanodots on SiO2 induced by remote H2 plasma

2016 
We demonstrated the formation of high-density iron silicide nanodots (NDs) on thermally grown SiO2 by exposing an electron-beam-evaporated Fe/amorphous-Si/Fe (Fe/a-Si/Fe) trilayer stack to remote H2 plasma without any external heating and characterized their silicidation state and crystalline phase. After the remote H2 plasma exposure, the formation of NDs with an areal density of ~4.3 × 1011 cm−2 and an average height of ~7.1 nm was confirmed. X-ray photoelectron spectroscopy (XPS) analyses indicate silicidation reaction induced by the remote H2 plasma exposure, which was accompanied by the agglomeration of Fe and Si atoms on the SiO2 surface. The formation of a crystalline β-FeSi2 phase was confirmed by Raman scattering spectroscopy and XRD pattern measurements. The electrical separation among the β-FeSi2 NDs was confirmed from changes in surface potential due to charging of the dots. The surface potential of the NDs changed in a stepwise manner with respect to the tip voltage because of multistep electron injection into and extraction from the semiconductor β-FeSi2 NDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []