Crystal Structure of D351A and P312A Mutant Forms of the Mammalian Sarcoplasmic Reticulum Ca2+-ATPase Reveals Key Events in Phosphorylation and Ca2+ Release

2008 
Abstract In recent years crystal structures of the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a), stabilized in various conformations with nucleotide and phosphate analogs, have been obtained. However, structural analysis of mutant forms would also be valuable to address key mechanistic aspects. We have worked out a procedure for affinity purification of SERCA1a heterologously expressed in yeast cells, producing sufficient amounts for crystallization and biophysical studies. We present here the crystal structures of two mutant forms, D351A and P312A, to address the issue whether the profound functional changes seen for these mutants are caused by major structural changes. We find that the structure of P312A with ADP and bound (3.5-A resolution) and D351A with AMPPCP or ATP bound (3.4- and 3.7-A resolution, respectively) deviate only slightly from the complexes formed with that of wild-type ATPase. ATP affinity of the D351A mutant was very high, whereas the affinity for cytosolic Ca2+ was similar to that of the wild type. We conclude from an analysis of data that the extraordinary affinity of the D351A mutant for ATP is caused by the electrostatic effects of charge removal and not by a conformational change. P312A exhibits a profound slowing of the Ca2+-translocating Ca2E1P→E2P transition, which seems to be due to a stabilization of Ca2E1P rather than a destabilization of E2P. This can be accounted for by the strain that the Pro residue induces in the straight M4 helix of the wild type, which is removed upon the replacement of Pro312 with alanine in P312A.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    35
    Citations
    NaN
    KQI
    []